The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation

نویسندگان

  • Mary Packard
  • Ellen Sumin Koo
  • Michael Gorczyca
  • Jade Sharpe
  • Susan Cumberledge
  • Vivian Budnik
چکیده

At vertebrate neuromuscular junctions (NMJs), Agrin plays pivotal roles in synapse development, but molecules that activate synapse formation at central synapses are largely unknown. Members of the Wnt family are well established as morphogens, yet recently they have also been implicated in synapse maturation. Here we demonstrate that the Drosophila Wnt, Wingless (Wg), is essential for synapse development. We show that Wg and its receptor are expressed at glutamatergic NMJs, and that Wg is secreted by synaptic boutons. Loss of Wg leads to dramatic reductions in target-dependent synapse formation, and new boutons either fail to develop active zones and postsynaptic specializations or these are strikingly aberrant. We suggest that Wg signals the coordinated development of pre- and postsynaptic compartments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses.

Growing evidence indicates that Wingless-type (Wnt) signaling plays an important role in the maturation of the central nervous system. We report here that Wingless-type family member 5A (Wnt-5a) is expressed early in development and stimulates dendrite spine morphogenesis, inducing de novo formation of spines and increasing the size of the preexisting ones in hippocampal neurons. Wnt-5a increas...

متن کامل

Pebble/ECT2 RhoGEF negatively regulates the Wingless/Wnt signaling pathway.

Wingless (Wg)/Wnt signaling is essential for patterning invertebrate and vertebrate embryos, and inappropriate Wnt activity is associated with a variety of human cancers. Despite intensive study, Wnt pathway mechanisms are not fully understood. We have discovered a new mechanism for regulating the Wnt pathway: activity of a Rho guanine nucleotide exchange factor (GEF) encoded by pebble (pbl) in...

متن کامل

A screen for X-linked mutations affecting Drosophila photoreceptor differentiation identifies Casein kinase 1α as an essential negative regulator of wingless signaling.

The Wnt and Hedgehog signaling pathways are essential for normal development and are misregulated in cancer. The casein kinase family of serine/threonine kinases regulates both pathways at multiple levels. However, it has been difficult to determine whether individual members of this family have distinct functions in vivo, due to their overlapping substrate specificities. In Drosophila melanoga...

متن کامل

Perlecan regulates bidirectional Wnt signaling at the Drosophila neuromuscular junction

Heparan sulfate proteoglycans (HSPGs) play pivotal roles in the regulation of Wnt signaling activity in several tissues. At the Drosophila melanogaster neuromuscular junction (NMJ), Wnt/Wingless (Wg) regulates the formation of both pre- and postsynaptic structures; however, the mechanism balancing such bidirectional signaling remains elusive. In this paper, we demonstrate that mutations in the ...

متن کامل

A Screen for X-Linked Mutations Affecting Drosophila Photoreceptor Differentiation Identifies Casein Kinase 1a as an Essential Negative Regulator of Wingless Signaling

The Wnt and Hedgehog signaling pathways are essential for normal development and are misregulated in cancer. The casein kinase family of serine/threonine kinases regulates both pathways at multiple levels. However, it has been difficult to determine whether individual members of this family have distinct functions in vivo, due to their overlapping substrate specificities. In Drosophila melanoga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2002